Home Page Link AgBioWorld Home Page
About AgBioWorld Donations Ag-Biotech News Declaration Supporting Agricultural Biotechnology Ag-biotech Info Experts on Agricultural Biotechnology Contact Links Subscribe to AgBioView Home Page

AgBioView Archives

A daily collection of news and commentaries on
ag-biotech.


Subscribe AgBioView Subscribe

Search AgBioWorld Search

AgBioView Archives

Subscribe

 


SEARCH:     

Date:

February 25, 2004

Subject:

Hormesis; GM Britain; Organic Debate; Questions for Foodphobes; GM Rules

 

Today in AgBioView: February 26, 2004

* Hormesis
* RE: The article "Bio-pharm crops: Proceed with caution"
* Gene-altered crops are safe: officials
* GM Foods Acceptance Questionnaire
* Why it's time for GM Britain
* GM debate: Dispelling myths
* GM crops delayed by at least a year after cabinet leak
* "Origins of The Organic Agriculture Debate" by Thomas R. DeGregori
* 20 Questions for Foodphobes
* Rules for gene-altered foods on way
* Disputes Stall Biotech Trade Talks
* La tecnología que salvará del hambre a miles de millones de personas

t that the following might be of interest to your readers.

Lance Kennedy
Tantec
--------------

Hormesis

Imagine a medieval castle and its defenders. When we consider its fate, we can visualize three separate situations.

1. The castle is located in a peaceful area. Over many generations, the people within become complacent, and fail to maintain or strengthen it. Finally an enemy arrives and destroys all in one swift attack.

2. The location is among dens of bandits. Frequent, but ineffective attacks, easily beaten off, lead the defenders to maintain, rebuild, and enlarge their home and its facilities. The final result is so strong and well defended that it can hold off the largest army.

3. Early in the castle’s history, it is attacked by overwhelming forces; defeated and destroyed.

This is a metaphor for the human body. Our physical selves may be attacked by a range of forces : pathogens, toxins, radioactivity, emotional stress, alcohol intake, and even too much exercise. Like the castle, there are three possible fates.

1. Lack of attack leads to a break-down of defences. For example; a child raised in too hygienic an environment, loses the ability to fight infection. This is potentially lethal.

2. Constant low level attack causes the body to adapt and become stronger.

3. If the attack is too strong (such as an overwhelming infection, or consumption of too much toxin) the result is death.

This is the principle of hormesis. We become stronger, fitter, and healthier, if exposed to low level stress. A much publicized example is the response of the body to alcohol. Ethanol is a toxin, and quite a nasty one. If the average man consumes the equivalent of 1.5 litres of standard whiskey over a short period of time, he has a 50% chance of dying. For the average woman, it is 1 litre. Yet studies have shown that, if we consume 2% of that dose daily, we will, on average, live longer and be healthier. Alcohol is not some kind of vitamin at small doses. Even at the 2% dose, it is still toxic. Ask a medical specialist about that level of intake and its effect on a human foetus. Yet for an adult, it is healthy. Why? The answer is that the alcohol retains its toxic effect. It is the body’s response to a chemical attack that leads to the greater health.

Radical environmentalist dogma ignores hormesis. Indeed, this principle is embarrassing to them. The most toxic man made molecule is 2,3,7,8 TCDD – the worst of the dioxins. Early toxicological studies showed that it could kill at tiny doses. What is frequently overlooked, however, is that the same studies showed that this lethal dioxin, at much smaller doses, reduced the incidence of cancer in laboratory rats. The result was highly significant. Similar results have been seen with numerous other toxins, tested on numerous other organisms. While we cannot ethically run such tests on people, it is highly probable that the same principle applies to Homo sapiens.

Conclusion. Small doses of toxins (say 1 to 2% of the smallest lethal dose) taken daily, almost certainly improve health, and reduce the incidence of death by cancer. If we consider this as an effect similar to vaccination, leading our bodies to strengthen defences against a low level attack, it makes perfect sense.

For a radical greenie, wanting to attack the use of agricultural pesticides, or suggest that novel proteins in GM crops may be harmful to our health, the principle of hormesis is one that he definitely does not want considered. The truth is, low level pesticide residues in food, or low levels of Bt toxin in GM crops, probably are a health promoting asset. It is only when toxin levels rise too high, (which happened in New Zealand, when organic zucchinis were attacked by insects, leading to the natural insecticide cucurbitacin appearing in massive quantities, putting 16 people in hospital) that people are harmed by the poison level. Dr. Edward Calabrese at the University of Massachusetts Amherst has spent much of his career exploring hormesis, and has numerous publications on the subject.

The principle even applies to radio-activity. Low level exposure has been shown to reduce cancer rates and increase human longevity. Radiologists suffer less cancer than other medical technicians. Nuclear ship-yard workers, less than those working on conventional ship building. Of course, excess exposure is harmful or lethal, but there is a good margin above background levels in which it appears to be beneficial. What should we think of the Greenpeace statement that Chernobyl will cause two million extra cancer deaths in Sweden? Hormesis studies suggest that the result will be reversed. Fewer, not more cancers from the slight increase in back-ground radio-activity.

Perhaps this principle should be remembered when we rebut many of the opponents of modern agriculture.
**************************************

From: An anonymous scientist
Subject: RE: The article "Bio-pharm crops: Proceed with caution"

Regards the Byrne article, "Bio-pharm crops: Proceed with caution", it is apparent that the protesters have a distaste for biotechnology, unrelated to the actual risk of the transgenic crop.

Consider the facts:

Meristem Therapeutics is developing maize that produces lipase as a treatment for cystic fibrosis.

Lipase is naturally produced in the human pancreas. It is required for normal digestion of fats. A quick survey on the Internet shows that it is also available as a unregulated nutritional supplement from many sources, including pancreatic extract, and a fungus (Aspergillus oryzae).

According to the Meristem Therapeutics website, http://www.meristem-therapeutics.com, their product is a mammalian gastric lipase and is intended for oral use. Meristem's website goes on to state that this product has satisfactorily completed Phase I and is already in Phase II clinical trials. So is this highly-regulated product to be feared, while the nutritional supplement companies market their untested products freely and without protest?

Once again, the facts suggest that it is the novelty of the GM crop, not the actual risk that has created the issue here.
**************************************

http://english.peopledaily.com.cn/200402/26/eng20040226_135892.shtml

Gene-altered crops are safe: officials

- People's Daily, February 26, 2004

China will make sure the controversial genetically modified (GMO) crops don't cause negative impacts on the country's bio-environment, the Ministry of Agriculture said Wednesday.

The ministry on Monday awarded its first batch of safety certificates for foreign genetically modified crops used for processing purposes in China, after a two-year period of safety assessments were made. During that time, the importers were giving temporary safety certificates.

"The crops have to pass the tests of a panel composed of 58 specialists from the agricultural, environmental, foreign trade authorities as well as the Chinese Academy of Sciences and universities,'' said Fang Xiangdong at a policy-explanation meeting Wednesday in Beijing.

"The evaluation process indicates the Chinese Government's highly responsible stance in protecting bio-safety, ecological environment and human health.''

Fang stressed that the certificates are not permanently valid due to the uncertainty of the biotech crops' impacts.

"There is no permanent safety certificate at all,'' she said. "We need to keep our eye on genetically modified crops for a long time, as the impact on environment and human health are still uncertain.''

The certificates for the genetically modified soybeans and maize will be valid for three years, and cotton five years.

The foreign R&D companies can apply for a renewal six months before a certificate expires, according to the new rules.

The new rules won plaudits from both domestic and foreign companies involved in the trade of genetically modified crops, especially those dealing in soybeans.

"It's good news for the importers and processing enterprises in our country,'' said Shi Zhijun, trading department assistant executive of EastOcean Oils & Industries Ltd, one of the largest soybean processing enterprises in China.

Monsanto, the largest American soybean exporter to China, told China Daily it is happy that the new policy will benefit the growers and ensure the normal operation of trade.

The ministry also emphasized that both the importers and providers are obliged to make sure the genetically modified crops do not threaten the environmental safety during transport, storage and processing.

But experts are still not satisfied with the authority's safety measures, saying they were only initial responses under today's limited technological conditions.

"When science and technologies develop in the future, there might be big problems found with these crops, like the irony with the invention of DDT,'' said Xia Youfu, foreign trade professor at the University of International Trade and Economics.

The pesticide that once won a Nobel prize was eventually banned in the world for its great harm to the environment, Xia noted.

Xia said it is important for the government to push for labelling system, in order to ensure people's right to know and to choose the modified products.
***********************************

http://www.zoomerang.com/survey.zgi?L222ZV7QMH2247DQSWRKH462

GM Foods Acceptance Questionnaire

My name is Mathew Jones and I am currently studying Human Biology in my third and final year at University College Northampton.

For my dissertation I have chosen to investigate whether: 'greater knowledge leads to a greater level of acceptance' regarding genetically modified crops amongst the UK population. I am using to collate information on the UK population's knowledge and attitudes towards GM crops and their proposed introduction to the UK food market.

If you could spare a few minutes to complete this questionnaire, it would greatly aid me in my research. Any answers given will remain anonymous and will be seen by myself only. Should you have any queries or wish to withdraw your answers at any stage, feel free to contact me using the details below. Many thanks, Mathew Jones. E-mail: 20065744@northampton.ac.uk

Take the survey at http://www.zoomerang.com/survey.zgi?L222ZV7QMH2247DQSWRKH462.
**************************************

http://education.guardian.co.uk/higher/sciences/story/0,12243,1156116,00.html

Why it's time for GM Britain

- The Guardian, February 26, 2004

[Leaked papers show the cabinet has given the go-ahead to genetically modified maize. Top government science adviser Chris Pollock puts the economic and ecological case to Ian Sample ]

GM crops

The back streets of Aberystwyth are narrow, windy and perfect for Chris Pollock's cramped little MGF convertible. He's giving me a lift to the railway station, with a taxi driver's sense for traffic-dodging short cuts, throwing the car down unpromising-looking streets, jumping ahead of the queues of Ford Focuses and Vauxhall Corsas.

Pollock is a big man to be driving such a small car, but then he's a big man for Aberystwyth. He is director of the Institute of Grassland and Environmental Research, the government-funded research centre for science in agriculture and the environment. He also heads the government's advisory committee on releases to the environment (Acre), the scientific panel that briefs ministers on the risks of genetically modified organisms in the environment. The position puts him at the frontline of one of the most fraught scientific debates the country has faced in recent years.

Within the past week, that debate has taken another turn. If the leaked minutes of a recent cabinet meeting are accurate, the government intends to follow advice from Acre and announce the go-ahead for a variety of GM maize, for the first time opening the door to a GM Britain.

Pollock is passionate, talking in booming sentences, about the stuff outside his office's huge windows - acres and acres of countryside, today looking washed out after heavy rain. As a self-confessed technophile, he believes it is right for GM crops to play a role in Britain's future agriculture. "There's no good scientific reason, in my view, for saying GM crops will innately cause problems purely because they are genetically modified," he says. "As a technophile, my argument would be that ever since the invention of the internal combustion engine, we've managed technology, with mistakes, but we've managed it to the extent that life expectancy continues to go up at a year a decade."

But does the view that GM crops, if managed responsibly, will not cause problems justify their introduction? Aren't GM crops technology for technology's sake, at least in Britain where, unlike in some developing countries, crops are rarely wiped out by aggressive pests or harsh weather, or simply fail to thrive in the soil? Pollock argues a longer-term view, that even if today's GM crops don't provide overwhelming advantages over conventional crops, the technology is necessary not just to improve agriculture, but to stay competitive. "If the UK is going to play some part in a global agricultural market, any new technology that reduces the price of a crop will have to be taken up if you are not to be at a disadvantage. Developed countries need to implement new technologies to stay ahead of the game," he says. Despite the Cabinet Office's surprisingly downbeat report last year, which claimed, among other concerns, that consumers would see little benefit from the current, first generation of GM crops, Pollock believes that the public will ultimately be better off if they are introduced. "Historically, every time you do something more efficiently, what happens is the price falls. The profit does not stay with the farmer. You can make the same argument about integrated circuits. Chip manufacturers go out of business like there's no tomorrow because every time they make them better, the price goes down and the benefit gets shoved right down to the consumer," he says.

And it is everyday consumers who will decide the future of GM crops in Britain. If GM crops flop in the shops, only a foolish farmer would continue to churn them out. "If nobody wants to buy it, there's no advantage to growing it in the UK. Farmers are highly responsive to markets. If they weren't we'd have a horsemeat industry in the country even though no one eats horse. These guys have got to make money out of it," says Pollock.

Aside from the ongoing, still stub bornly polarised debate on GM crops in Britain, there are deeper concerns about British agriculture that have largely gone unaddressed. According to Pollock, by focusing attention on the impact of farming techniques on the environment, the government's farm-scale trials brought to the fore questions about the impact intensive farming has already had on Britain's wildlife and broader environment.

Britain's push towards more intensive farming was driven by postwar necessity: in 1945, there was simply too little food to go round. There was no motivation to think about, let alone squabble over, the best kind of agriculture for the country: in short, it was no time for the luxuries of caution and complaint. As a result, Britain leapt into a regime of intensive farming on a massive scale, creating a legacy from which we are still suffering. "Since the war, we have destroyed habitat diversity, we've destroyed habitat quality, simply because there wasn't enough food to go round and we needed to increase crop yields," says Pollock. "The country swallowed whatever agricultural technology was thrown at it."

Now, says Pollock, it's time we decided what we really want from our countryside. Change in land use is inevitable, driven in part by the forthcoming, though undoubtedly sluggish, reform of the common agricultural policy that will see subsidies for farmland change dramatically.

Pollock sees it as an opportunity to undo some of the harm farming has caused in recent decades. Intensively farmed land could be converted into tourist-attracting grounds that are managed to maintain their biodiversity. "Most people will accept that we've gone too far and we need to reel back. The point is, all this land has to be managed. You can't just leave it untended and expect it to turn into a zoo without your doing anything."

But how far back do we want to rewind the British countryside? What balance of biodiversity do we want? These are the questions the public should be thinking about now, he says.

Unsurprisingly, Pollock says science, and GM technology, may provide novel ways of changing the countryside. If the technology works as its advocates hope, GM crops might allow farmers to produce the same yields from smaller acreages, leaving more land aside for wildlife. In practice, that means a mix of more hedgerows, so-called shelter belts, broad field margins and strips within crop fields where creatures can seek food and refuge.

Much of the land currently being farmed will be given up for other uses. "If you have shedloads of money, what's the most expensive commodity you can buy in Britain?" asks Pollock. "It's privacy." Those with the money to do so are increasingly buying up land, not to build flats on or turn into some other eyesore, but to have as their own, to walk around in, to plant trees in, to enjoy for what it is. "If you look at land sales in the south-east over the past six months, it hasn't been going to farmers or property developers, it's going to stockbrokers," he says.

Pollock admits that he has suc cumbed to the lure of land-buying himself, having bought a small patch nearby to walk around in.

While Pollock is keen to move on, to think about other issues of import to the British countryside other than just GM crops, he remains palpably ruffled by Britain's tortuous GM debate. Scientists should take some of the blame, he says, for being unprepared for the public's reaction to the powerful new tools to spin out of biotech research. "The scientific community got very badly flat-footed over GM. I don't think they thought there would be a problem," he says. "They just didn't realise the world was going to change - to make public engagement so important - so quickly."

The result was that when non-governmental organisations began to voice concerns, the scientific community didn't know how to react. Part of the difficulty was that many lobby groups were attacking GM on different, single issues, such as the potential impact on birds or the impact on organic farmers. Pollock argues that the environment cannot be treated that simply. A rational debate has to address all the issues, he says. But that is not the way it happened, and effective, headline-grabbing stories became the norm. "You get messages like 'don't eat GM food because it will kill you', which is palpably crackers, from people who smoke marijuana," he says.

According to Pollock, the wrangling over GM crops, and the demonising of GM technology as a whole by some, has had a lasting effect on the public's view of scientists working on GM crops. If they are advocates of the technology, they are necessarily in the pockets of the biotech industry, the government or both. Or so the anti-GM lobby groups would say.

"We've gone from the days of Harold Wilson and the white-hot heat of the technological revolution to scientists like me being labelled next to the proprietor of the Sun as the people least trusted by the public," says Pollock.

"There was a guy on the television the other night talking about how they were producing a vaccine for bird flu using genetic manipulation. If I said I was genetically modifying a chicken so it couldn't catch bird flu, I'd be hanging from a lamppost by now. It's been an uphill struggle with GM, I don't think there's any doubt about that."
***************************************

GM debate: Dispelling myths

Heredity (2004) 92, 135-136. doi:10.1038/sj.hdy.6800422
February 2004
By C. Lichtenstein (Via Agnet)

[Conrad Lichtenstein, Professor of Molecular Biology at the University of London's Queen Mary and Westfield College, was among the first to use RNA silencing to engineer resistance to viral infection in GM plants. He was the first to show viral integration into plant genomes during evolution and is heavily involved in the public understanding of science within the GM debate.]

I participated in a number of 'GM Nation?' debates in the early summer of 2003, both as a plant molecular biologist with relevant research interests, and as a panel member of Cropgen (www.cropgen.org). Cropgen is a consumer and media information initiative that makes the case for GM crops, helping to achieve a greater measure of realism and balance in the GM debate that has been running these last few years.

Attendees at the debates I spoke at were largely anti-GM; thus it is not surprising that the government report, which summarised the 37 000 questionnaires returned from the 675 meetings held across the country, found antipathy to GM to be at odds with other polls of the population as a whole. A number of other flaws in the analysis were recently shown by Campbell and Townsend (2003). Nonetheless, the outcome of 'GM Nation?' still puts the government in an awkward position in deciding on the future of GM in Britain.

The debates covered a complex web of inter-related issues: (i) alien, unnatural technology; (ii) food safety; (iii) intensification of agriculture and its effect on the environment; (iv) genetic pollution; (v) being driven solely by profits.

As a scientist, I saw the anti-GM 'scientists' as my principal adversaries, who sought to use their scientific credentials to incite fear in the hearts of the scientifically ignorant with a series of wild statements about the dangers of GM. Yet when challenged, they were unable to supply any peer-reviewed research as evidence to support them.

It was on the first issue of 'alien unnatural technology' that I first became engaged in the GM debate back in 1999: I led a project to engineer transgenic virus-resistant plants by expressing a virally derived antisense transgene that blocked expression of the invading viral DNA replication machinery (Day et al, 1991). Tobacco was our original chosen plant model for engineering plant resistance, and we found that similar 'transgenes' were already present as multiple repeats of methylated silent DNA on two different tobacco chromosomes (Bejarano et al, 1996), as well as related species, suggesting an ancient illegitimate viral DNA recombination event 25 million years ago (Murad et al, 2004 and references therein). So, GM can happen in nature, I argued, using this as an illustration because of the poignancy of it being the same transgene that Mother Nature had 'used'. However, I made the general point that horizontal gene transfer is natural - the real driver being selection - citing the spread of antibiotic-resistance genes in bacterial pathogens by artificial selection on natural plasmid-and transposon-mediated gene transfer.

Of course, all of agriculture is alien and unnatural and selective breeding is artificial selection. What GM adds is artificial variation in place of selection based on variation arising from random natural mutations or, since the 1960s, from randomly induced variation using gamma rays: the so-called 'mutation breeding'. Conventional agriculture is now more productive than ever, with its new crop varieties, the green revolution, and the use of fertilisers, herbicides, and pesticides. This reduces biodiversity in the crop field, but allows us to feed more people, more cheaply, and leaves more land free of cultivation.

Organic farming is less productive and requires more land, but GM technology offers organic farmers the opportunity to increase their productivity organically, that is without the need to spray pesticides. Future benefits include crop production on marginal lands, high in salt or low in water. Thus the rejection of GM, an intrinsically organic process, by the organic movement is puzzling. They are biting the very hand that could feed them.

I heard an anti-GM scientist say that GM foods cause cancer, that the herbicide 'round-up' used both generally and on the herbicide-tolerant GM crops in the recent farm-scale evaluations, causes neurodegenerative diseases, yet no evidence was presented to support these claims. In any case, GM is a process and not a product, so no generic statement is possible on the safety of GM food unless we accept the flawed and controversial data that Pusztai presented in the Lancet some years ago, that the process is mysteriously able to make food harmful (Ewen and Pusztai, 1999).

An anti-GM scientist told us that GM technology was unstable and unreliable, could cause mutations by inserting into genes, and that GM transgenes were prone to methylation. It was not made clear why this was a problem for anyone but the breeder, who might need to screen a number of transgenic lines for their desired characteristics. The argument was eclectic in failing to point out that mutation breeding, perhaps to a even greater extent than GM, causes random unknown DNA damage, yet 70% of crop varieties currently in use, including those by organic farmers, were made by this method.

However, this argument generated the fear that these transgenes could run amok and, due to their instability, leave the host plant escaping into the wild. There was much vivid imagery and emotive language but no clear mechanism to account for how such events might occur, nor for the implication that 'GM DNA' was more dangerous to eat than any of the other vast quantities of DNA that we eat every day.

Unsubstantiated claims by the fear-mongering anti-GM scientists highlight a central problem in a high technology society of specialists: few, if any, of these anti-GM scientists are currently, or have ever been, actively engaged in experimental research relevant to GM. Such research could cover the regulation of gene expression; epigenetics and gene methylation; DNA recombination; and construction and screening of transgenic plants. No editor of a scientific journal would choose these individuals as a reviewer. However, how is the layperson to evaluate the credentials of these experts who present themselves to the media? Society does currently seem to be moving in the wrong direction: a distrust of mainstream 'conventional science' in favour of the fringe.

The challenge we face in countering the anti-GM scientists is to reduce complex scientific principles to persuasive and understandable morsels for the layperson, in the face of quasiscientific scare-mongering. One's immediate instincts are to rebut with a reasoned, coherent scientific argument that invalidates this techno-babble; the danger exists, however, that only a scientist would realise the strength of your argument, and that the lay audience is left as frightened as before. Scare-mongers can use science to promote fear far more easily than scientists can use science to reduce anxiety. Twas ever thus.

Among all this, what most worried people at these debates was capitalism. There were conspiracy theories that GM technology, driven solely by profits, was leading to global control of food production by large multinational companies in collusion with governments, thus exploiting poor farmers with expensive GM seed and doing nothing for the needs of the developing world. Yet, with the collapse of communism, this grievance against capitalism was not countered by any presentation of an alternative.

With no training in economics, I found myself having to defend capitalism by quoting from The Wealth of Nations by Adam Smith: 'It is not from benevolence of the butcher, the brewer, or the baker, that we expect our dinner, but from their regard to their own interest*(Man is) led by an invisible hand to promote an end which was no part his intention*" I pointed out that all economies need industry to be profitable; that industry has to operate with profit in mind; that we all have a stake in this profit as holders of ISAs and pension funds; that new technologies increase capital value and benefit the whole of society, without stealing from the poor to give to the rich: and that if capitalism really was their concern, there were far bigger fish to fry than GM.
***************************************

GM crops delayed by at least a year after cabinet leak

- The Guardian, By Paul Brown, Thursday February 26, 2004

Genetically-modified crops cannot be planted in the UK for at least another year, and maybe not even then, the environment minister, Elliot Morley, said yesterday.

The delay is because it will take many months to sort out proper separation distances between crops, and a liability regime for contamination of conventional or organic crops.

A Commons statement by Margaret Beckett, the environment secretary, that the government is to go ahead with the first commercially grown GM crop has been delayed, after the leak to the Guardian last week of cabinet sub-committee minutes.

Details of government plans to recruit MPs and scientists to put a gloss on the announcement embarrassed ministers, who have decided that another wide public consultation exercise is required before the policy on commercial growing can be implemented.

Mr Morley met Gregory Barker, Conservative MP for Bexhill and Battle, who has cross-party support for a private member's bill on GM being introduced on March 26. It would create a strict regime for planting and compensation for farmers whose crops or livelihoods are damaged by GM crops.

Mr Morley told him that the government would not support his bill, although the minister agreed with parts of it.

Mr Morley told the Guardian that the bill was "out of sync" with government plans for a wide-ranging public consultation on the separation distances between GM and other crops and compensation funds for farmers, and on who would pay any damages.

A series of meetings at the department after the leak of cabinet papers and the widespread adverse reaction to the government's plans has led ministers to slow the process. They now aim to have firm proposals for separation distances and a liability regime in place at the end of this year.

Although the issue of distances between crops might be relatively easy to resolve, the twin problem of compensation if all goes wrong, and who pays for it, remains intractable.

The biotech companies remain adamant that they will not foot the bill, and that it is a matter for insurance by farmers. The government refuses to set up a fund with taxpayers' money.

Paul Rylott, head of Bioscience at Bayer CropScience, the company which markets fooder maize, the first GM crop likely to be grown commercially in the UK, said biotech companies would under no circumstances pay for a compensation fund. They had not been asked to do so anywhere in the world and did not intend to start in Britain.

Sue Mayer, of GeneWatch, a scientific campaigning group said: "Liability, if all goes wrong, is the key issue. It should not be left to the taxpayer to foot the bill."
***********************************

http://healthfactsandfears.com/high_priorities/vs/2004/origins022304.html

Book Review of "Origins of The Organic Agriculture Debate" by Thomas R. DeGregori

- Reviewed by Alex Avery

How in the world did so many people get so fearful of the very science and technology that have lifted humanity out of malaria and mud huts? That's the fundamental question asked and discussed at length in the new book by ACSH's Thomas DeGregori, Origins of The Organic Agriculture Debate.

Full review at http://healthfactsandfears.com/high_priorities/vs/2004/origins022304.html
******************************

http://healthfactsandfears.com/featured_articles/feb2004/questions022404.html

20 Questions for Foodphobes

- Health Facts and Fears, By Thomas R. DeGregori, February 24, 2004

Rather than lecturing people about the technology that has made their food crops possible, and how easily old technologies, too, could be made to sound scary were we not all by now familiar with it, I am trying an alternate strategy: asking people twenty questions — some of which may sound scary — that I hope will make them think more rationally about food safety. Try to answer honestly, as you would without looking at the answers:

Questions and full article at http://healthfactsandfears.com/featured_articles/feb2004/questions022404.html
*******************************

http://www.thestar.com/NASApp/cs/ContentServer?pagename=thestar/Layout/Article_Type1&c=Article&cid=1077750609904&call_pageid=968332188774&col=968350116467

Rules for gene-altered foods on way

Label guidelines could come as early as next week, but critics fear Canadian public will be misled

- The Toronto Star, By Dana Flavelle, February 26, 2004

Four years and several hundred thousand dollars later, Canada is about to publish its first voluntary standards for labelling food free of genetically modified ingredients.

But critics, including consumer groups and some food processors, say the rules are so badly flawed they will be of no use to the majority of Canadians worried about consuming genetically modified food.

"We want labelling but what we got was meaningless," said Nadege Adams, of the Council of Canadians, a consumer group that monitored the process.

A cereal could be advertised as containing GM-free corn even though the canola oil in the ingredient list is genetically modified, said Susan Powell, executive director of the Canadian Food Exporters Association.

Even the title is unwieldy: The Standard for Voluntary Labelling of Food Obtained or Not Obtained through Genetic Modification.

Still, the Standards Council of Canada is widely expected to press ahead with publication of the new rules, possibly as early as next week, insiders said.

Observers expect organic food manufacturers will be the first to adopt the "GM-free" label since most already meet the standard.

Some traditional food processors will test consumer demand by launching new GM-free products, industry members predicted.

"The industry is aware Canadians have an interest in this," said Robin Garrett, vice-president for member services with the Food and Consumer Product Manufacturers Association of Canada.

New products will likely come with higher price tags because it costs more to maintain separate GM-free ingredients, they said.

Canadian grocery store operators, who are on the front line of consumer demand for GM-free products, say the new rules will benefit consumers.

"We needed a national set of rules so consumers could make informed decisions on products that did or did not contain genetically engineered ingredients," said Jeanne Cruikshank, vice-president of the Canadian Council of Grocery Distributors.

The council, which represents major supermarket chains, including Loblaw and Sobeys, initiated the process that led to development of the standards.

The claims will be confusing for consumers and difficult for manufacturers to prove, said the food processors' Garrett.

Among the concerns:

The guidelines are voluntary. No one has to declare genetically engineered ingredients are present.

As much as 5 per cent of a product may be genetically altered and still be called GM-free. In Europe and Asia, the threshold is just 1 per cent.

The rules apply only to a very narrowly defined genetically "engineered" group of products. In Canada, that covers canola, soy and corn, and some varieties of potato.
************************************

http://www.timesdaily.com/apps/pbcs.dll/article?AID=/20040226/API/402260699

Disputes Stall Biotech Trade Talks

- Associated Press, By SEAN YOONG

Europe and developing countries clashed with the United States Thursday about the global trade in genetically modified commodities, with the former demanding strict labeling and liability laws and the latter seeking looser guidelines.

As a five-day conference on biotechnology safety neared its conclusion, government officials, scientists and environmentalists from more than 80 nations remained mired in disputes about whether gene-spliced crops might benefit - or befoul - human health and the environment.

Meanwhile, Mexico announced it was banning imports of some genetically engineered maize - a decision that could affect its imports from the United States, a key exporter of biologically altered foods.

Divisions at the conference surfaced in nearly every discussion on how to implement the U.N. Cartagena Protocol, which aims to protect Earth's diversity of life from biotechnology's possible risks by ensuring countries receive enough information to let them accept or reject gene-modified imports.

European and African countries called for punitive measures against signatories that fail to comply with the protocol's requirements to be included. The United States and Canada argued that such measures - which some countries say could include trade sanctions - are unnecessary.

U.S. officials said identification papers accompanying bio-engineered shipments meant for release into the environment - such as new varieties of corn for cultivation - shouldn't have to include details on how they've been genetically modified. India and Iran disagreed.

Swiss delegate Francois Pythoud, who chaired talks on the transport of biotech goods, expressed hopes that before the conference ends Friday, delegates might agree on "compromise language" for texts that suggest how shipments should be packaged and identified.

Ethiopia and other African nations called for a legally binding international regime that allows people to seek compensation from exporters if gene-modified organisms contaminate their environment or damage their health. But many countries refused to debate legalities for now.

Environmentalist groups accused biotech crop producers that haven't ratified the Cartagena Protocol - such as the United States and Canada - of undermining the treaty by trying to persuade other countries to sign separate agreements with them on biotech shipping procedures.

Mexico, which has ratified the protocol, last October signed a tripartite accord with the United States and Canada that activists claim barely fulfills some the protocol's minimum requirements.

Victor Manuel Arambula, executive secretary of Mexico's biosafety commission, announced Thursday his country was banning imports of maize engineered for nonagricultural purposes, such as producing proteins and chemicals used in pharmaceutical products and plastic.

The ban - which takes effect immediately - aims to prevent any genetic contamination of maize cultivated in Mexico for food, Arambula told reporters.

He said the ban doesn't interfere with Mexico's obligations under its pact with the United States, and Greenpeace spokeswoman Doreen Stabinsky said the announcement was "insignificant" because Mexico currently doesn't import any of the maize it is banning. She accused Mexican officials of trying to deflect attention from the criticism it has attracted over its trilateral agreement.

Mexico noted in a statement Thursday that the agreement has "not been free from mistrust and criticism," but stressed its aim was to maintain trade of genetically altered goods "in a practical, unequivocal and realistic way."

Mexico last year imported 5.6 million metric tons (6.1 million short tons) of yellow corn, mostly from the United States, Arambula said. He gave no statistics on what percentage of these were gene-modified.
*****************************************

http://www.agbioworld.org/biotech_info/articles/tecnologia.html

La tecnología que salvará del hambre a miles de millones de personas

- The American Enterprise, By C.S. Prakash and Gregory Conko, 1 de marzo de 2004

Hoy en día, la mayor parte de las personas del mundo tiene acceso a los alimentos en una disponibilidad y variedad mayor de la que nunca se tuvo en tiempos pasados. Esto es debido principalmente al desarrollo de la ciencia y la tecnología agraria. La vida media de las personas, el indicador más importante de la calidad de vida, se ha incrementado en el último siglo en prácticamente todos los países. Incluso en muchos países menos desarrollados, la vida media se ha doblado en las últimas décadas. A pesar de 6.000 millones en la actualidad, la malnutrición global ha descendido de un 38% a un 18%. India y China, dos de los países más poblados del mundo y en rápida industrialización han cuadruplicado su producción de granos.

El record de productividad agraria en el último siglo habla por sí mismo. Países que adoptaron la tecnología agraria han crecido a una prosperidad sin precedentes para su población, haciendo los alimentos más abundantes y disponibles, estabilizando los rendimientos agrarios y limitando la destrucción de los espacios naturales. Los aumentos de productividad de las variedades obtenidas por la mejora genética, así como el uso de fertilizantes sintéticos y pesticidas permitieron al mundo doblar la producción de alimentos en 50 años, utilizando prácticamente la misma superficie, lo q Si no hubieran ocurrido estas mejoras de genética y otros desarrollos científicos, que hoy conocemos como “Revolución Verde” hoy en día deberíamos labrar cada centímetro cuadrado de la tierra del planeta para producir la misma cantidad de alimentos, destruyendo millones de hectáreas de espacios naturales de alto valor ecológico.

Muchos países menos desarrollados de Latinoamérica y Asia se beneficiaron en gran parte de la Revolución Verde. Sin embargo, por una serie de razones humanas y naturales, las tecnologías agrarias no se expandieron igualmente por todo el planeta. Muchas personas en Africa Subsahariana y en el sur de Asia continúan sufriendo una pobreza derivada de la baja productividad de su agricultura. Alrededor de 740 millones de personas van a la cama a diario con hambre y 40.000 personas, de las cuales la mitad niños, mueren cada día de hambre o malnutrición. De no cambiar las actuales tendencias, el número de personas con problemas de desnutrición sobrepasará los mil millone

La FAO prevé que la población mundial crecerá en más de 8.000 millones en 2030, estimando que la producción de alimentos deberá crecer en un 60% para atender los requerimientos de este crecimiento de población y cerrar la brecha de la desnutrición. Incrementar los rendimientos, con la ayuda de todas las herramientas disponibles, incluyendo la biotecnología, es algo crucial.

Una optimización del uso de los insumos agrícolas, como maquinaria, fertilizantes, insecticidas, herbicidas etc, ha sido ya desarrollada. No obstante, el más importante factor de aumento de la productividad ha sido y es la mejor comprensión de los principios genéticos. Cada cultivo agrícola es producto de una selección artificial realizada por el hombre durante los últimos milenios, nuestros ancestros escogieron unas pocas plantas salvajes y gradualmente las modificaron simplemente seleccionando aquellas q plantas agrícolas que hoy nos alimentan tienen muy poco en común con sus orígenes. Los tomates o patatas silvestres, por ejemplo, contienen potentes toxinas, mientras que las variedades cultivadas han sido modificadas para alimentar a los humanos, eliminando estos venenos naturales.

El cruzamiento artificial de diferentes plantas de la misma especie ha ayudado a introducir características deseables de algunas variedades en cultivares productivos, y cuando las características deseadas no estaban presentes en la misma especie se han tomado genes prestados de especies silvestres emparentadas. El trigo, el centeno o la cebada son normalmente cruzados con otras especies silvestres para introducir nuevas características; las plantas comerciales de tomate son también normalmente cruzadas con nematodos y hongos. Sucesivas generaciones de plantas han sido a su vez cuidadosamente retrocruzadas con variedades comerciales para eliminar las características de las plantas salvajes no deseadas transferidas accidentalmente, como la producción de toxinas, algo que es común en plantas silvestres.

Cuando las especies cultivadas y las plantas salvajes emparentadas no se cruzan de forma natural se utilizan diversos artificios para sortear esta incompatibilidad natural. Incluso a pesar de estas manipulaciones, los embriones formados en estos cruces entre especies distintas en muchas ocasiones no son viables o son incapaces de reproducirse por sí mismos y solamente se les puede hace fértiles mediante tratamientos químicos que provocan que la planta mute y se multipliquen sus cromosomas. Por ejemplo, el es solo posible por el cultivo de embriones y la multiplicación artificial de cromosomas en laboratorio. Actualmente se cultivan 1,2 millones de Ha de triticale en el mundo, y son comunes las variedades de plantas agrícolas que han sido obtenidas mediante cruzamientos artificiales entre distintas especies emparentadas que no se podrían haber producido de forma natural.

Cuando una característica deseada no se encuentra en el acervo genético de la especie ni tampoco en el de las especies emparentadas con que se puede cruzar de forma natural o artificial, los genetistas pueden crear nuevas variedades provocando mutaciones con radiaciones, productos químicos o simplemente cultivando células y dejando que muten de forma espontánea durante la división celular. Provocar mutaciones fue un método común para la obtención de nuevas variedades en los años 50; y más de 2.250 variedades mutantes se han obtenido en más de 50 países, incluyendo Francia, Alemania, Italia, el Reino Unido y los Estados Unidos. Una relativamente nueva variedad de trigo mutante, que es tolerante a un herbicida se ha puesto en el mercado en Estados Unidos en julio de 2003.

Los métodos de mejora genética basados en DNA recombinante (rDNA) no son más que una reciente extensión de la multitud de técnicas que han sido empleadas hasta hora en la obtención de variedades de plantas. La diferencia fundamental es que en este caso se trata de una transferencia mucho más precisa de unos pocos genes conocidos, una inserción de una porción de material genético muy pequeña en comparación con los métodos clásicos, que consisten en grandes cambios genéticos, muchos de ellos desconocidos e i

Prominentes científicos de todo el mundo han corroborado la seguridad de los cultivos biotecnológicos para la salud y el medio ambiente y han hecho un llamamiento para que esta tecnología se utilice para ayudar a los más necesitados, especialmente para combatir el hambre en los países en desarrollo. Instituciones como la Academia Nacional de Ciencias de EEUU, la Royal Society de Reino Unido o el Programa de Desarrollo de las Naciones Unidas. Más de 3.500 eminentes científicos de todo el planeta, incluyendo agricultura biotecnológica. Una revisión de 81 trabajos independientes patrocinada por la Unión Europea concluye que los cultivos y alimentos OMG son al menos tan seguros como los convencionales, y en algunos casos incluso más seguros.

Actualmente, la superficie de cultivo de variedades obtenidas mediante la moderna biotecnología es de unos 57 millones de hectáreas en 16 países. Más de las tres cuartas partes de los 5,5 millones de agricultores que las cultivan son de baja renta y en países en desarrollo, y eso a pesar de que las variedades actuales han sido diseñadas para la agricultura de países desarrollados. Estas variedades son maíz, soja, pata y algodón modificados genéticamente para ser resistentes a plagas o un control más simple las malas hierbas. La experiencia de la adopción de los OMG por parte de los países en desarrollo en los últimos años ha mostrado que los beneficios para estos puede ser al menos igual, si no superior, a la de países desarrollados, ya que la limitación de la productividad agraria por plagas y enfermedades en las zonas tropicales y subtropicales es mucho mayor que en las zonas templadas del planeta.

Se estima que un 20% de la productividad agrícola en el mundo desarrollado, y un 40% en los países en desarrollo se pierde por plagas y enfermedades, a pesar del uso de productos fitosanitarios. El taladro del maíz destruye al año aproximadamente el 7% de la cosecha mundial del maíz, equivalente a 40 millones de toneladas, la mayor parte en países en desarrollo; por lo que no es sorprendente la rápida adopción de este tipo de maíz biotecnológico en estos países cuando las autoridades permiten su cultivo.

Los cultivos OMG tienen además otras importantes ventajas para los países más pobres. En China, donde los tratamientos fitosanitarios se aplican manualmente de forma mayoritaria, se calcula que mueren a año entre 400 y 500 agricultores por envenenamientos accidentales con pesticidas. Según un estudio de la Universidad Rutgers y la Academia de Ciencias Norteamericana, en China la adopción del algodón Bt autoprotegido contra insectos ha reducido en un 75% el número de estos siniestros, al ser necesario menos producto. Otro estudio de la Universidad de Reading (Reino Unido) muestra el mismo efecto en el cultivo de algodón Bt en Sudáfrica.

La reducción del uso de pesticidas significa además un consumo menor de los recursos empleados en su fabricación y transporte. En 2002, el cultivo de algodón OMG en EEUU supuso un ahorro de 9,6 millones de litros de fuel; 384 millones de litros de agua y 41.000 jornales, necesarios para la aplicación de los pesticidas.

En los próximos años, verán la luz variedades OMG creadas de forma específica para los países en desarrollo, como arroz resistente a insectos para Asia; patata tolerante a virosis de Africa y papaya resistente a virus para la zona del Caribe. La próxima generación de cultivos biotecnológicos, que está ahora en los laboratorios incluye tolerancias a suelos pobres y adversas condiciones del clima, factores que son frecuentes en los países menos favorecidos, y a menudo la principal causa de su pobreza. Los ci estrés medioambiental, incluyendo salinidad y suelos ácidos o alcalinos.

La principal razón de que África no se beneficiase de la Revolución Verde es que los mejoradores de plantas se centraron en especies como arroz, trigo y maíz, que no eran los cultivos principales de África, que tiene gran parte de sus tierras en climas áridos y sin posibilidad de riego. Además, las pobres infraestructuras y la falta de recursos que existe en la mayor parte del continente hace que sea difícil obtener los insumos necesarios (fertilizantes, herbicidas, pesticidas) para el cultivo de las varie en las mismas semillas, la biotecnología tiene el potencial de poder llegar a importantes incrementos de productividad con una menor utilización de medios químicos o mecánicos y de forma más respetuosa con el medio ambiente. Los agricultores podrían controlar plagas, enfermedades, el calor, la sequía o la pobreza del suelo, simplemente sembrando la variedad adecuada.

Algunos activistas antibiotecnología como Vandana Shiva de la Research Foundation for Science de Nueva Delhi o Miguel Altieri de la Universidad de California argumentan que los agricultores de los países pobres no se beneficiarán de la biotecnología porque ésta está controlada por multinacionales. Según Altieri "La mayor parte de las innovaciones biotecnológicas han sido obtenidas por el ánimo de lucro y no por atender las necesidades de estos países. La realidad es que el objetivo de la industria de la in sus beneficios empresariales"."

Esta opinión no es compartida por cientos de investigadores del sector público que trabajan en la obtención de cultivos biotecnológicos en estos países. Según Cyrus Ndiritu, antiguo director del Instituto de Investigación Agraria de Kenia (KARI) "No son las multinacionales quienes tienen el dominio de África, sino el hambre y la pobreza, y África podría salir de este dominio utilizando la biotecnología".

La biotecnología ofrece además la posibilidad de mejorar la calidad nutritiva de los productos. La próxima generación de OMG pretende ofrecer beneficios directos al consumidor como una mejor calidad de las proteínas, menor contenido de grasas saturadas, mayor contenido de vitaminas y minerales y otras mejoras, así como reducir el nivel de toxinas naturales y eliminar substancias causantes de alergias. Algunos de estos nuevos productos están siendo ya desarrollados exclusivamente para su aplicación en la ag

Una de las modificaciones genéticas de este tipo más conocidas es el Arroz Dorado (Golden Rice) que contiene mucho más beta-caroteno o provitamina A que el arroz convencional. El mismo equipo científico que obtuvo el Golden Rice ha desarrollado otro arroz con más hiero digestible. La dieta de más de 3.000 millones de personas en todo el mundo es inadecuada en cuanto al contenido de vitaminas y minerales, como el hierro o la vitamina A. La deficiencia en estos elementos deriva en anemia y un menor desarroll físico e intelectual, ceguera e incluso la muerte. Diversas organizaciones de Naciones Unidas han resaltado la importancia de reducir las carencias de vitamina A y de hierro en la población, sin que hasta la fecha se haya llevado a cabo una estrategia efectiva. El arroz dorado y otras nuevas obtenciones de la biotecnología pueden ofrecer ahora una alternativa. El arroz dorado es un primer ejemplo del valor de la biotecnología en la investigación pública y utilizada sin ánimo de lucro. El desarrollo de es que ha prometido poner esta tecnología a disposición de los agricultores menos favorecidos sin coste alguno. Científicos de universidades y centros de investigación públicos de varios países están desarrollando cultivos similares, como es el caso de la patata rica en proteína en la India.

La investigación biotecnológica está en vías de obtener frutas y hortalizas que contengan vacunas que pueden salvar vida, como un plátano que produce la vacuna de la hepatitis B y una patata capaz de inmunizar contra las diarreas.

Es cierto que algunos aspectos de la moderna agricultura tiene un impacto negativo sobre la biodiversidad, el aire, el suelo o la calidad de las aguas. Sin embargo, la biotecnología ha demostrado ser la tecnología agraria más respetuosa con el medio ambiente desde la invención del arado. El riesgo de polinización cruzada entre las plantas cultivadas y las silvestres emparentadas siempre ha existido. Durante años los mejoradores han ido introduciendo genes en los cultivos mediante métodos convencionales com estrés o resistencia herbicidas, alterando además los hábitos de crecimiento de las plantas. La modificación genética es desde hace muchos años un fenómeno común y lo único que cambia la moderna biotecnología es la forma de hacer estas modificaciones.

Una de las mayores amenazas para las poblaciones hambrientas del mundo se derivan de las políticas restrictivas derivadas de un alarmismo injustificado. Mientras que la mayor parte de los americanos tienden a apoyar la biotecnología agraria, los europeos y asiáticos son mucho más cautelosos. Los activistas anti-biotecnología presentes en ambos países alimentan esta ambivalencia con argumentos alarmistas que refuerzan las políticas restrictivas. Este alarmismo no esta apoyado por ningún argumento científica

Una política excesivamente cautelosa revierte en sobrecostos en investigación y desarrollo y hace mas difícil el acceso a los países más pobres a la biotecnología. Nadie duda que se deba proceder con cautela, pero las restricciones innecesarias en la agricultura biotecnológica pueden suponer un importante freno al progreso, impidiendo en la práctica que los beneficios de esta tecnología lleguen a la gente que más los necesita. Esto sería un trágico efecto de una preocupación injustificada.

En 2002, el presidente de Zambia Levy Mwanawasa, rechazó 23.000 Tm de maíz de ayuda alimentaria cuando 2 millones de habitantes estaban en una situación cr´tica por el hambre tras dos años de sequía. Mwanawasa justificó el rechazo de esta maíz en que no estaba certificado como libre de OMG y que podía ser "venenoso". Otros funcionario de Zambia justificaron esta decisión en que la entrada de OMG en el país podría comprometer unas eventuales exportaciones futuras a la UE donde existe una moratoria sobre los

El caso de Zambia no es el único. Las restricciones de la UE al uso de la biotecnología agraria tienen similares consecuencias en el mundo en vías de desarrollo. Tailandia es reacia a adoptar nuevas variedades OMG de arroz que han sido obtenidas por su propia investigación por los temores de problemas comerciales. Uganda ha detenido su investigación en biotecnología en plátano y pospuesto indefinidamente su introducción. Argentina mantiene congeladas la aprobación de nuevas variedades OMG de maíz hasta que es una gran potencia en investigación en agricultura biotecnológica tiene congelada la introducción de los resultados de sus investigaciones a la espera de ver como se mueve la UE en este sentido. El Instituto Internacional del Arroz (IRRI) que está encargado de traspasar la característica del Arroz Dorado a las variedades locales ha pospuesto sus planes de lanzar este arroz en Filipinas de forma indefinida.

La moratoria de la UE persiste después de cinco años a pesar de la abultada evidencia en su contra, incluyendo la proporcionada por los propios investigadores europeos, de que la modificación genética biotecnológica no tiene ningún riesgo que no tuvieran ya los métodos de mejora genética convencionales practicados durante años, y gracias los cuales se alimenta hoy el mundo.

El hambre y le desnutrición no está causada solamente por la falta de alimentos. En muchos países son causas principales la corrupción política, las deficientes infraestructuras y la pobreza. Todos estos problemas podrían ser paliados si existiera una verdadera seguridad alimentaria. Durante los próximos 50 años la población del mundo crecerá un 50% a 9.000 millones de habitantes, la mayor parte d los cuales estarán en los países en desarrollo. Para producir los alimentos necesarios para alimentar a esta p el regalo de valor incalculable de la biotecnología.

---------------------------------------------
AgBioWorld http://www.agbioworld.org
Email your response to
---------------------------------------------


=
=